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My take on the PCA business
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What is the best estimate of a 
spectrum given many measured 

spectra?

Simple approach using optimal estimation:

• Forward model is
y = x + ε

x is true spectrum, y is measurement, ε is noise

• Maximum a posteriori estimate of x is
xr = xa + Sa(Sa + Sε)-1(y - xa)
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Continued…

• If we have a large sample of spectra:
– Expect that xa = <x + ε> = <y> 
– Can estimate Sa+Sε from statistics of y
– Should have a good idea of Sε a priori

• But:
– Sa(Sa+Sε)-1 will be a large matrix
– Sa found from Sa+Sε and Sε is likely to be ill-conditioned

• Sa is likely to have a ‘small’ number of eigenvalues
greater than noise
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Singular Vectors
(or Principal Components)

• Let the ensemble of (y - <y>) be N columns of a matrix Y

• Represent Y as its singular vector decomposition: 
Y = UΛVT 

where Λ is diagonal, UTU=I and VTV=I

• The j’th individual spectrum yj is then
yj = <y> + Σi uiλivij

T

• The spectrum is represented as a sum of columns ui of U, 
with coefficients  λivij

T.

• Because UTU=I, we can compute λivij
T for any spectrum as 

UT(yj- <y>).
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What do we expect?

• 1/NYYT is the covariance matrix Sy of the spectra

• Left singular vectors U are the same as eigenvectors of YYT, 
singular values are the square roots of its eigenvalues

• In the linear case with independent constant noise, Sy would be
Sy = Sa + σε2 I

• Sa has rank ≤n,  I is of dimension m >> n, where n is the degrees of 
freedom of the atmosphere

• The eigenvalues of Sy are λi2/N

• The eigenvalues of Sa should be λi2/N - σε2 
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Reconstructing Spectra

• We can drop terms with λi
2/N ~ σε2 , i.e. i > n, without 

significant loss 
– they correspond to noise only
– Better, multiply retained terms by something like           

(λi
2 - N σε2)/ λi

2

• So spectra can be reconstructed from the first 
few coefficients.

• The noise can be reconstructed from the rest…

• Reconstructed spectra have much reduced noise
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Information Content 

• The Shannon information content of a single 
spectrum relative to the ensemble is

H = 1/2∑i  ln(λi
2/N σε2 )

• The degrees of freedom for signal is

ds = ∑i (1 - N σε2/λi
2)

• But reality isn’t quite like that. . .
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Tropospheric Emission Spectrometer

• Connes-type four-port Fourier transform spectrometer

• Nadir view: 0.06 cm-1

• Limb view: 0.015 cm-1

• 16 element detector arrays in 4 focal planes:
– 1A (1900-3050), 1B (820-1150), 2A (1100-1950 ), 2B 

(650-900)

• 0.5 X 5 km nadir; 2.3 X 23 km limb

• Global Survey mode: Along track nadir, 216 views/orbit.
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SVD Applications

• Information content analysis

• Validation
– Instrument performance
– Forward model

• De-noised spectra

• Retrieval?
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A typical example

Run 2147
21 Sept 2004?

Channel 1B2
923-1160 cm-1

100 views * 16 
detectors
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An example of Information Content 
from Channel 1B2

SV number

Sing. Vals.

Fit to noise asymptote
Residual

n   Lambda    Information        d.f.s
cum.           cum.

0  253.315    5.535   5.53    1.000  1.000
1   19.940    2.994   8.53    1.997  0.997
2    8.496    2.147  10.68    2.984  0.986
3    3.226    1.217  11.89    3.896  0.912
4    2.446    0.972  12.86    4.753  0.857
5    1.675    0.668  13.53    5.490  0.737
6    1.072    0.382  13.91    6.025  0.535
7    0.553    0.133  14.05    6.259  0.234
8    0.433    0.086  14.13    6.417  0.158
9    0.232    0.026  14.16    6.468  0.051
10    0.156    0.012  14.17    6.492  0.024
11    0.086    0.004  14.18    6.499  0.007
12    0.076    0.003  14.18    6.505  0.006
13    0.054    0.001  14.18    6.508  0.003

14    0.048    0.001  14.18    6.510  0.002

Using one orbit, 1152 
spectra each with 3951 
elements.

923-1160 cm-1

Total: 14.5 bits 7.05 d.f. 
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How do you fit noise to the asymptote?

• I havn’t used enough spectra…

• Expected distribution of singular values of 
independent gaussian noise for a finite 
number of samples
– Simulation
– Theory: there is an explicit formula

• Fit expected distribution to the long tail
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Validation – an early example

Run 2147
21 Sept 2004?

Channel 1B2
923-1160 cm-1

100 views * 16 
detectors
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Singular Vectors
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Singular vectors * Lambda
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V-vectors
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Features

• Most of variation is in the first singular vector. First six 
are:

5.96×106 3.6×105 1.83×105 1.39×104 7.93×104 6.16×104

• Data spikes - identified

• Data spikes - unidentified

• Pixel-dependent variation in the spectra

• Scan-direction dependence
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Singular Vector 6

• Systematic variation across the detector array

• Must be an artefact

• Suggests systematic error in ILS

• How is it related to mean spectrum?

• Least squares fit to find function that when 
convolved with mean spectrum gives SV6
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SV6
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SV6
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SV6

Suggests the derivative of the ILS
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Curious behaviour of the singular values of 
an ensemble of 1600 2B1 spectra

What is this?

This is the atmospheric variability

650-900 cm-1
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Features

• It occurs at around SV 200. I have used 100 sequences, 
1600 spectra.

• Implies two of these SV’s per sequence. Confirmed by trying 
other numbers of sequences

• The vec��tors look like noise

• Only in 2B1 does this
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With 64 sequences, plotted in 9/04

The shoulder here is at 64 – there was only 1 per sequence then
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Examine pixel noise

• Look at the spectrum for each pixel minus the 
mean over all pixels
– removes atmospheric structure, 
– but differences will be slightly correlated

• Singular vectors of the difference: look like noise

• Coefficients of the singular vectors for one set of 
16: don’t look like noise for two of the SV’s

• Covariance & correlation matrices
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SV coefficients
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2B1 noise is significantly correlated between pixels
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Deductions

• The change from 1 to 2 SVs per sequence implies 
something in the processing rather than the 
instrument

• Each pixel has its own independent noise

• Plus noise correlated between all the pixels of each 
sequence

• The correlations depend on distance between the 
pixels, quasi-sinusoidally

• Not an odd pixel/even pixel effect
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SV’s of Residual Spectra

• Difference between measured spectrum 
and calculated from retrieval

• No just in the microwindows used

• Courtesy Reinhard Beer & Susan S. Kulawik
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Mean Residual Radiance for Run 2147 (2004 September 21)
from 220 Spectra between 30oS & 30oN
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Singular Values of Run 2147 Full-Filter Residuals
("W" Matrix Diagonal; First 51 Elements of 568 only)
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U Singular Vector 0

Index (Time order)
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The quasi-periodicity is due to the orbital variation of total radiance

Note the strong resemblance to the grand average
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U Singular Vector 1

Index (Time order)
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This pattern of roughly 4-8-4 orbits has been observed in other diagnostics.
The cause is under investigation.

The discontinuity at 1120 cm-1 occurs at the overlap of two different filters
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U Singular Vector 2

Index (Time order)
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Positive peaks align with land scenes (green bars)

Broad feature is a component of the unmodeled surface silicate emissivity
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Retrieval – some untested thoughts
Possible methods include:

– Retrieve from denoised spectrum in the same way as 
usual, but with noise covariance reduced in some ad-hoc 
way 

• not optimal, inefficient

– Ditto, but with the correct error covariance 
• covariance matrix is singular

– Select a subset of channels according to information 
content

• straightforward if linear, not otherwise

– Retrieve from SV representation coefficients
• needs a special forward model for efficiency – PCRTM
• or a regression or neural net method
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Characterising a denoised spectrum

• Reconstruct y with the first r singular vectors, 
Ur, giving yr

yr = UrUr
Ty

• Measurement function is:
yr = UrUr

TF(x) + UrUr
Tε

• We assume that UrUr
TF(x) ~ F(x) , so

yr = F(x) + UrUr
Tε = F(x) + εr

• Covariance of εr is
Sεr =  UrUr

T SεUrUr
T

which is of rank r
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Retrieve from a denoised spectrum

• We can use all or some of the spectrum.
– Microwindows
– Channels selected by information content 
– Channels selected by Xu Liu’s approach

• Define a selection operator M, and retrieve from the m
element subset ym = Myr

• The subset depends on the whole of the original spectrum, 
ym = MUrUr

Ty, but we assume that we can model it as MF(x).

• The error covariance of εm is
Sm = M UrUr

TSεUrUr
TMT

which may be singular if m > r.
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Do another SVD…

• Use the SVD of MUrUr
T = LΛRT to give

LTym = LTMF(x) + ΛRTε

• Drop elements of LTym with zero (or small) singular 
values, leaving p=min(r,m) elements at most. Gives 
Lp

Tym

• Retrieve from the rest of Lp
Tym with Lp

TMF(x) as 
the forward model. Lp

T can be precomputed.

• Error covariance is ΛpRp
TSεRpΛp. If Sε= σ2I, this 

reduces to σ2Λp
2.
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Comments

– This allows us to retrieve with the minimum 
number of evaluations of the forward model

– And the minimum length of measurement vector

– With very little extra matrix manipulation

– I havn’t tried it yet, so I don’t know what the 
catch is…
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Summary/Comments

• PCA does not improve the information content of a 
measurement

• But it does allow us to use it more efficiently

• Very useful for validation - separates out 
independent sources of variation, e.g. artefacts, 
omitted physics, . . .

• Denoised spectra guide the eye to real features 
that may otherwise� not be seen

• Data compression
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