

Application of Principal Component Analysis to TES data

Clive D Rodgers Clarendon Laboratory University of Oxford

Madison, Wisconsin, 27th April 2006

My take on the PCA business

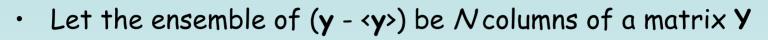
What is the best estimate of a spectrum given many measured spectra?

Simple approach using optimal estimation:

- Forward model is
 y = x + ε
 x is true spectrum, y is measurement, ε is noise
- Maximum a posteriori estimate of x is $x_r = x_a + S_a(S_a + S_{\epsilon})^{-1}(y - x_a)$

Continued...

- If we have a large sample of spectra:
 - Expect that $\mathbf{x}_a = \langle \mathbf{x} + \varepsilon \rangle = \langle \mathbf{y} \rangle$
 - Can estimate $\boldsymbol{S}_a\boldsymbol{\boldsymbol{\mathsf{+}}}\boldsymbol{S}_\epsilon$ from statistics of \boldsymbol{y}
 - Should have a good idea of $\boldsymbol{S}_{\!\epsilon}$ a priori
- But:
 - $S_a(S_a+S_{\epsilon})^{-1}$ will be a large matrix
 - \bm{S}_a found from $\bm{S}_a \textbf{+} \bm{S}_\epsilon$ and \bm{S}_ϵ is likely to be ill-conditioned
- \boldsymbol{S}_{a} is likely to have a 'small' number of eigenvalues greater than noise



- Represent Y as its singular vector decomposition: $Y = U\Lambda V^{T}$ where Λ is diagonal, $U^{T}U=I$ and $V^{T}V=I$
- The j'th individual spectrum \mathbf{y}_j is then $\mathbf{y}_j = \langle \mathbf{y} \rangle + \Sigma_i \mathbf{u}_i \lambda_i \mathbf{y}_{ij}^T$
- The spectrum is represented as a sum of columns u_i of U, with coefficients $\lambda_i v_{ij}^{T}$.
- Because $U^T U=I$, we can compute $\lambda_i v_{ij}^T$ for any spectrum as $U^T(\mathbf{y}_j < \mathbf{y})$.

What do we expect?

- $1/N \mathbf{Y} \mathbf{Y}^{\mathsf{T}}$ is the covariance matrix \mathbf{S}_{y} of the spectra
- Left singular vectors U are the same as eigenvectors of YY^T, singular values are the square roots of its eigenvalues
- In the linear case with independent constant noise, S_v would be

$$S_y = S_a + \sigma_{\epsilon^2} I$$

- S_a has rank $\leq n$, I is of dimension $m \gg n$, where n is the degrees of freedom of the atmosphere
- The eigenvalues of \boldsymbol{S}_{y} are λ_{i}^{2}/N
- The eigenvalues of \bm{S}_a should be $\lambda_{\tt i}{}^2/{\tt N}$ $\sigma_{\!\epsilon}{}^2$

Reconstructing Spectra

- We can drop terms with $\lambda_i{}^2/N \sim \sigma_{\epsilon}{}^2$, i.e. i> n, without significant loss
 - they correspond to noise only
 - Better, multiply retained terms by something like $(\lambda_i^2 N \sigma_{\epsilon}^2) / \lambda_i^2$
- So spectra can be reconstructed from the first few coefficients.
- The noise can be reconstructed from the rest...
- Reconstructed spectra have much reduced noise

Information Content

• The Shannon information content of a single spectrum relative to the ensemble is

 $H = \frac{1}{2}\sum_{i} \ln(\lambda_{i}^{2}/N\sigma_{\epsilon}^{2})$

• The degrees of freedom for signal is

$$d_s = \sum_i (1 - N \sigma_{\epsilon}^2 / \lambda_i^2)$$

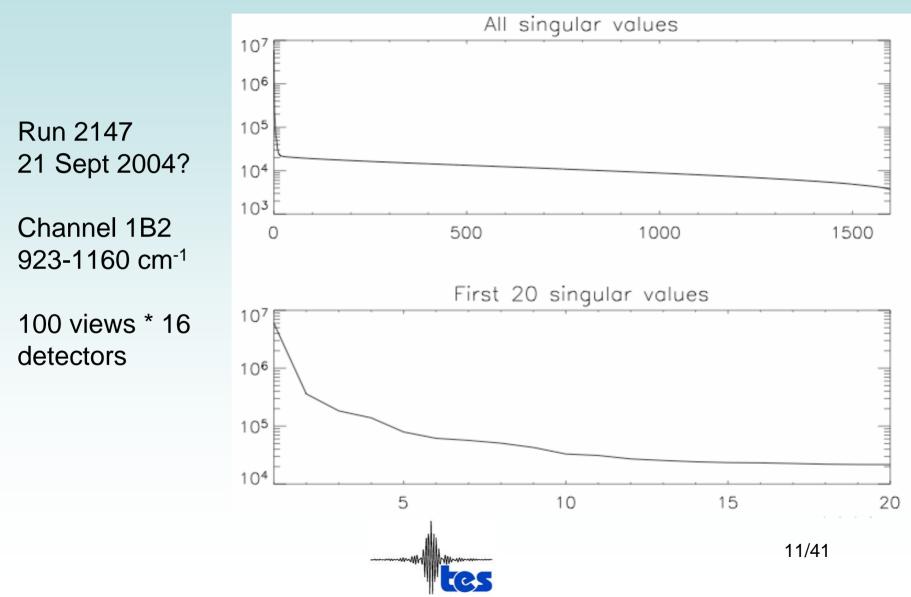
• But reality isn't quite like that...

- Connes-type four-port Fourier transform spectrometer •
- Nadir view: 0.06 cm⁻¹ •
- Limb view: 0.015 cm⁻¹ ٠
- 16 element detector arrays in 4 focal planes: ٠
 - 1A (1900-3050), 1B (820-1150), 2A (1100-1950), 2B (650-900)
- 0.5 X 5 km nadir; 2.3 X 23 km limb •
- Global Survey mode: Along track nadir, 216 views/orbit. •

SVD Applications

- Information content analysis
- Validation
 - Instrument performance
 - Forward model
- De-noised spectra
- Retrieval?

A typical example

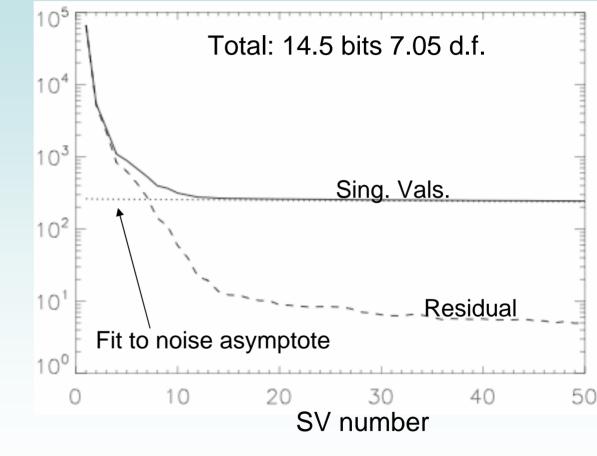


An example of Information Content from Channel 1B2

Using one orbit, 1152 spectra each with 3951 elements.

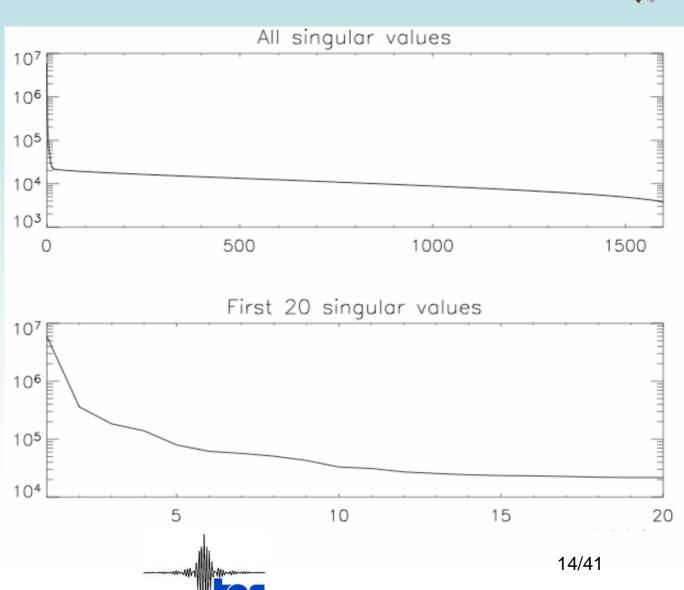
923-1160 cm⁻¹

n	Lambda	Information		d.f	d.f.s	
			cum.		cum.	
0	253.315	5.535	5.53	1.000	1.000	
1	19.940	2.994	8.53	1.997	0.997	
2	8.496	2.147	10.68	2.984	0.986	
3	3.226	1.217	11.89	3.896	0.912	
4	2.446	0.972	12.86	4.753	0.857	
5	1.675	0.668	13.53	5.490	0.737	
б	1.072	0.382	13.91	6.025	0.535	
7	0.553	0.133	14.05	6.259	0.234	
8	0.433	0.086	14.13	6.417	0.158	
9	0.232	0.026	14.16	6.468	0.051	
10	0.156	0.012	14.17	6.492	0.024	
11	0.086	0.004	14.18	6.499	0.007	
12	0.076	0.003	14.18	6.505	0.006	
13	0.054	0.001	14.18	6.508	0.003	
14	0.048	0.001	14.18	6.510	0.002	



12/41

- I havn't used enough spectra...
- Expected distribution of singular values of independent gaussian noise for a finite number of samples
 - Simulation
 - Theory: there is an explicit formula
- Fit expected distribution to the long tail



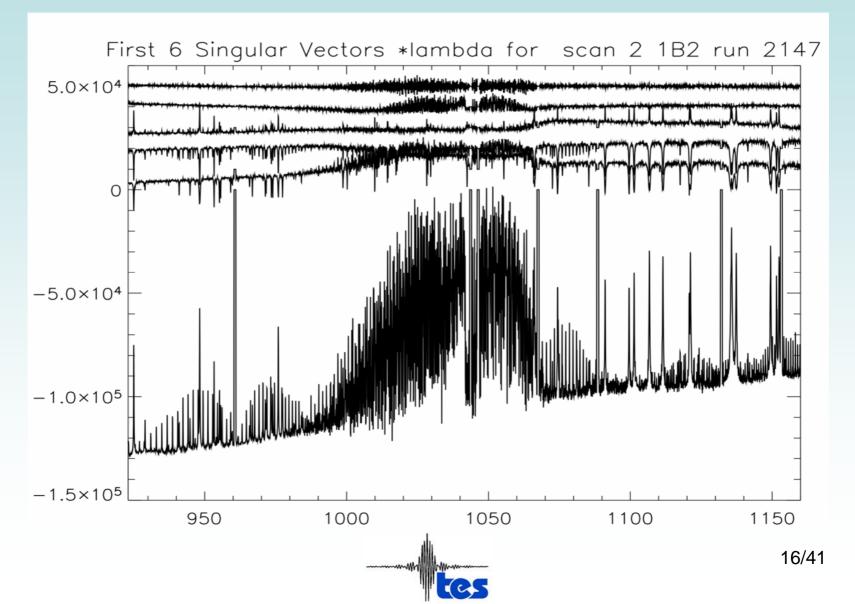
Run 2147 21 Sept 2004?

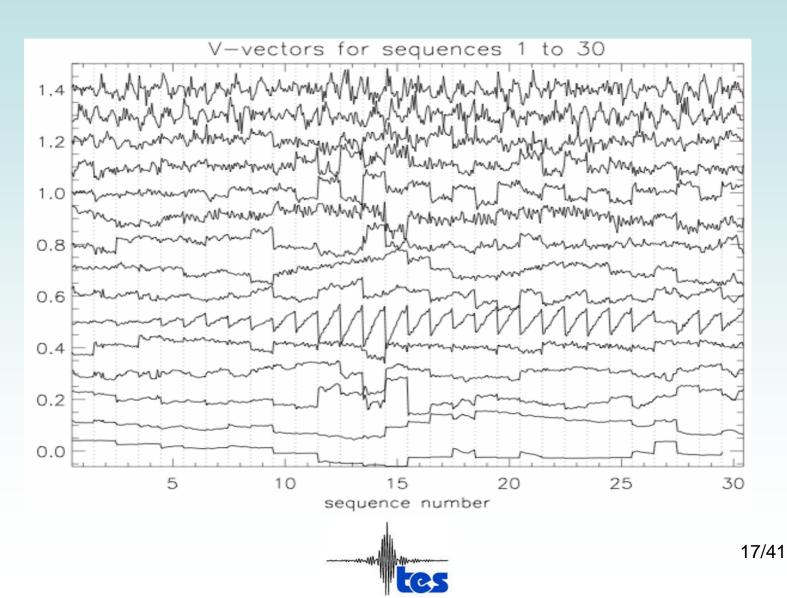
Channel 1B2 923-1160 cm⁻¹

100 views * 16 detectors

Singular Vectors

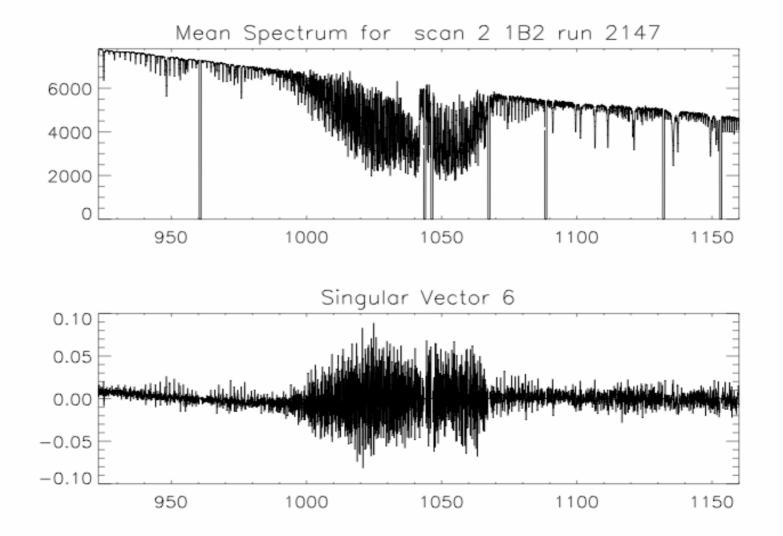


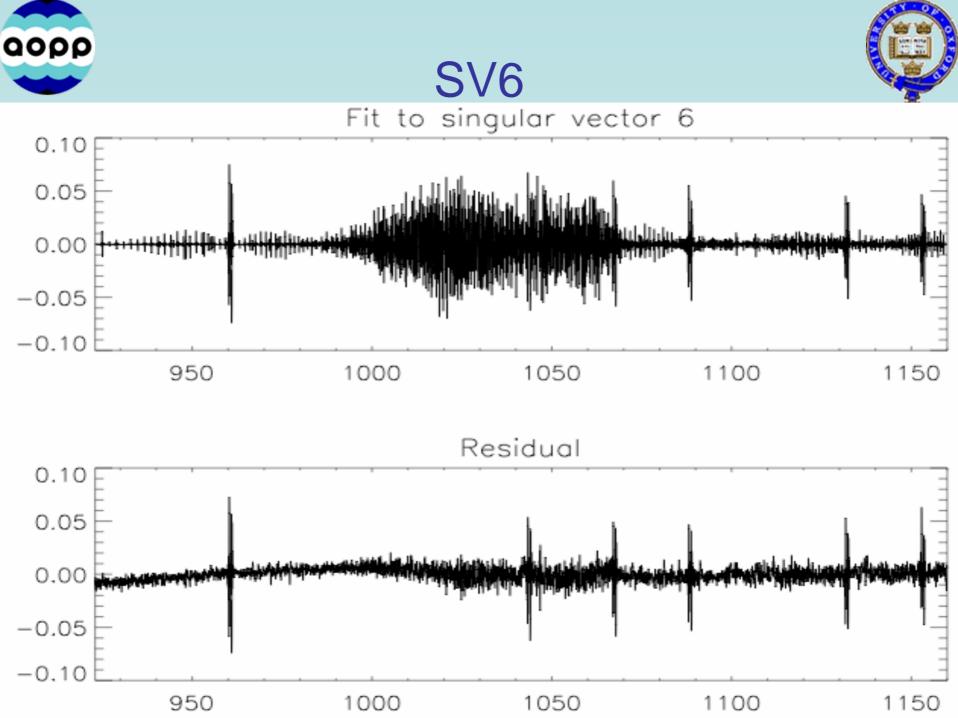


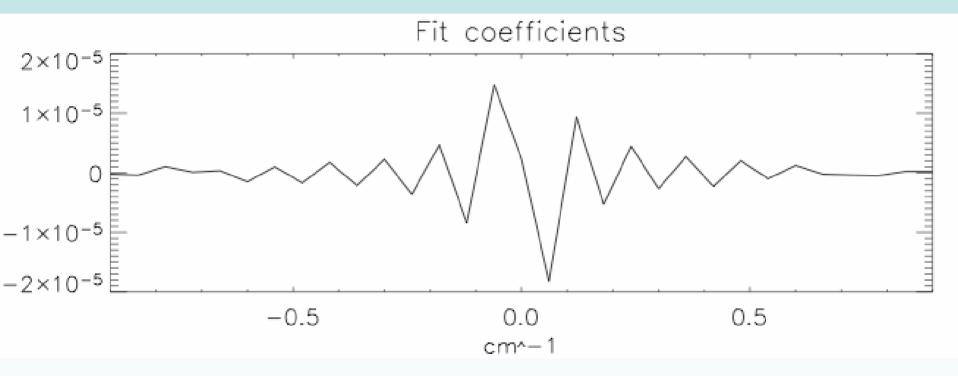


- Most of variation is in the first singular vector. First six are:
 5.96×10⁶ 3.6×10⁵ 1.83×10⁵ 1.39×10⁴ 7.93×10⁴ 6.16×10⁴
- Data spikes identified
- Data spikes unidentified
- Pixel-dependent variation in the spectra
- Scan-direction dependence

- Systematic variation across the detector array
- Must be an artefact
- Suggests systematic error in ILS
- How is it related to mean spectrum?
- Least squares fit to find function that when convolved with mean spectrum gives SV6

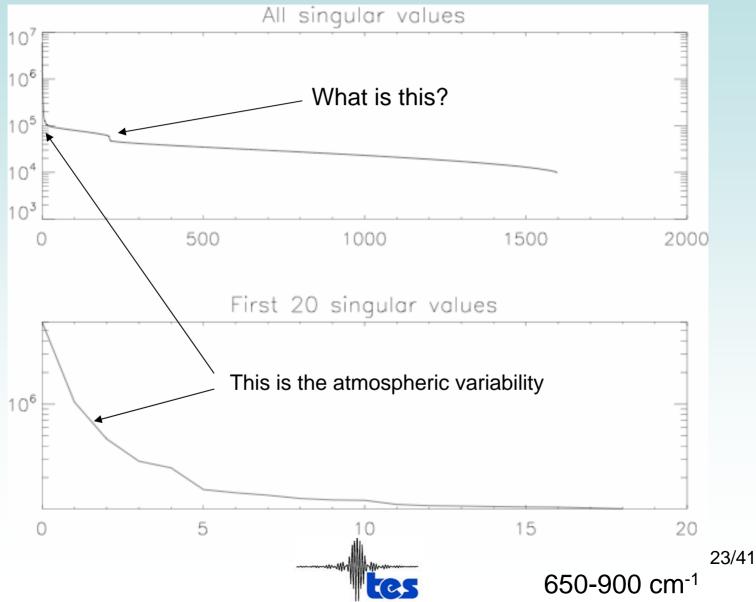






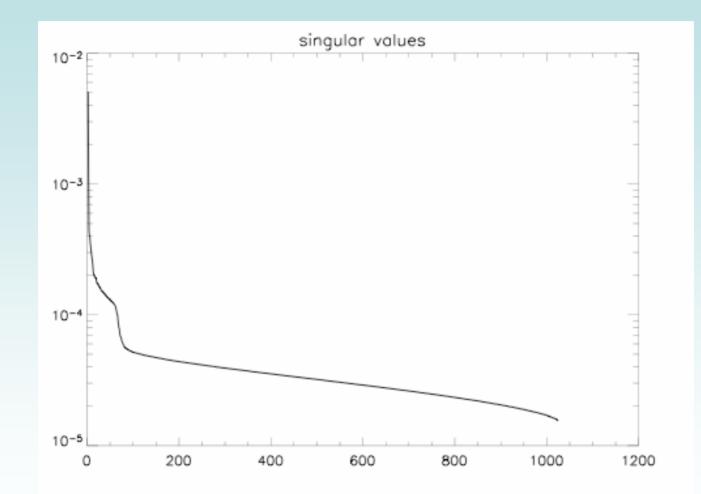
Suggests the derivative of the ILS

Curious behaviour of the singular values of an ensemble of 1600 2B1 spectra



- It occurs at around SV 200. I have used 100 sequences, 1600 spectra.
- Implies two of these SV's per sequence. Confirmed by trying other numbers of sequences
- The vec tors look like noise
- Only in 2B1 does this

With 64 sequences, plotted in 9/04

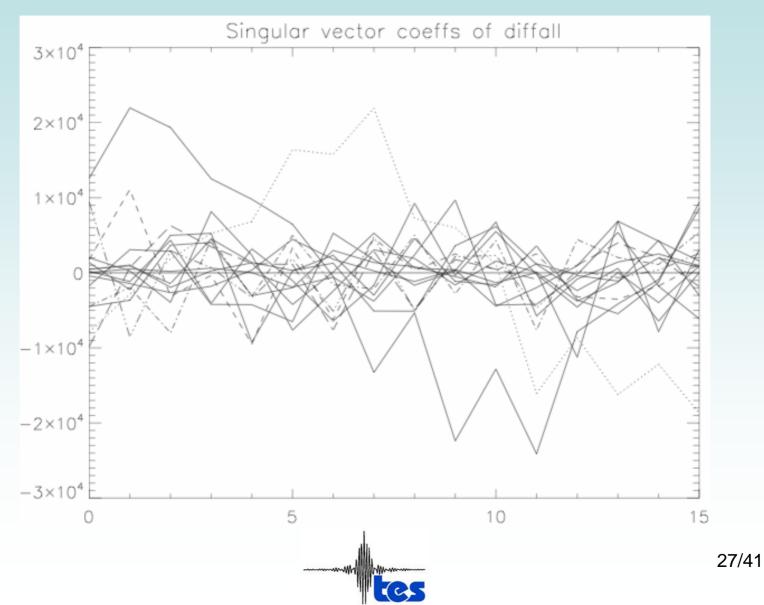


The shoulder here is at 64 – there was only 1 per sequence then

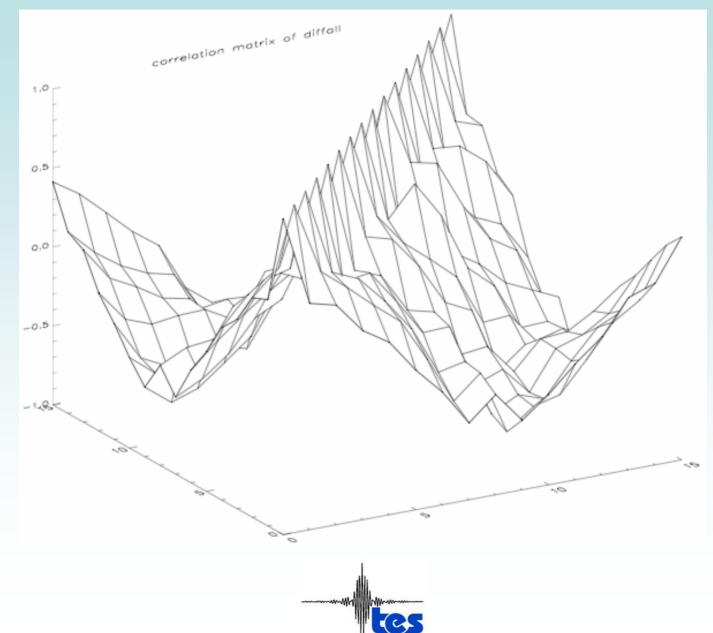
Examine pixel noise

- Look at the spectrum for each pixel minus the mean over all pixels
 - removes atmospheric structure,
 - but differences will be slightly correlated
- Singular vectors of the difference: look like noise
- Coefficients of the singular vectors for one set of 16: don't look like noise for two of the SV's
- Covariance & correlation matrices

SV coefficients



QOPP 2B1 noise is significantly correlated between pixels

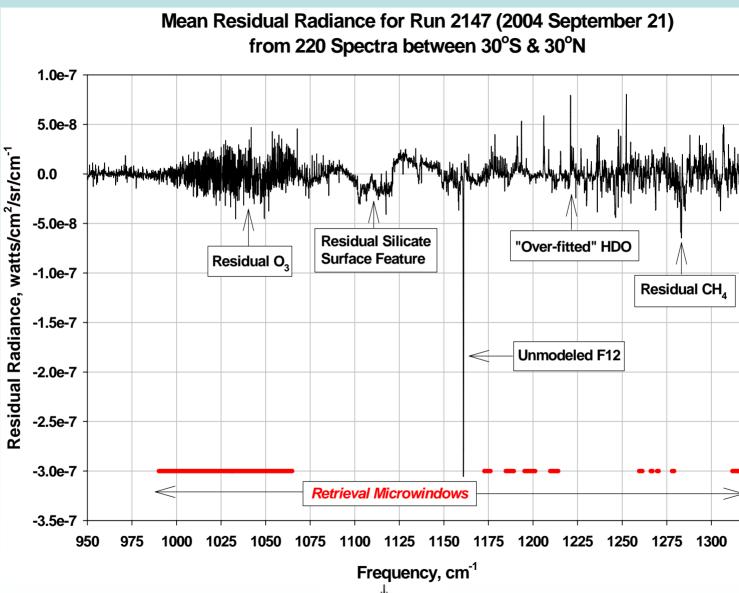


28/41

- The change from 1 to 2 SVs per sequence implies something in the processing rather than the instrument
- Each pixel has its own independent noise
- Plus noise correlated between all the pixels of each sequence
- The correlations depend on distance between the pixels, quasi-sinusoidally
- Not an odd pixel/even pixel effect

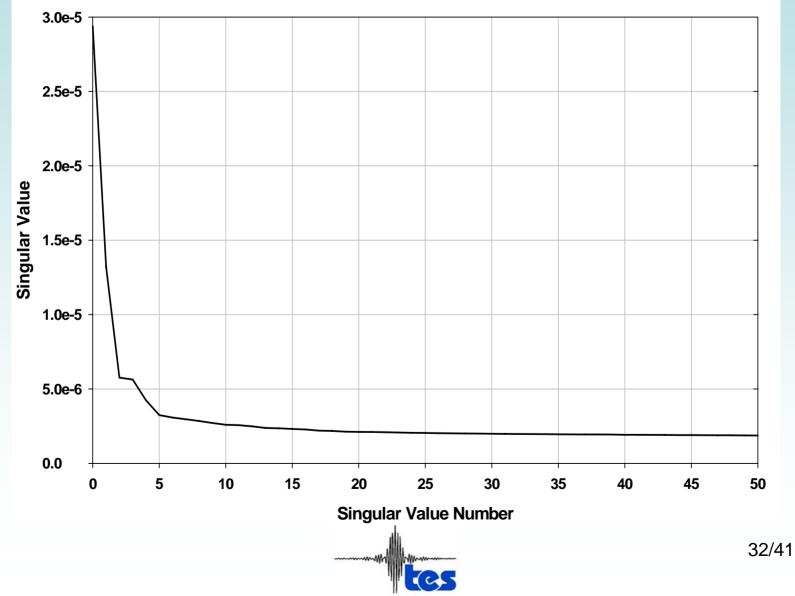
SV's of Residual Spectra

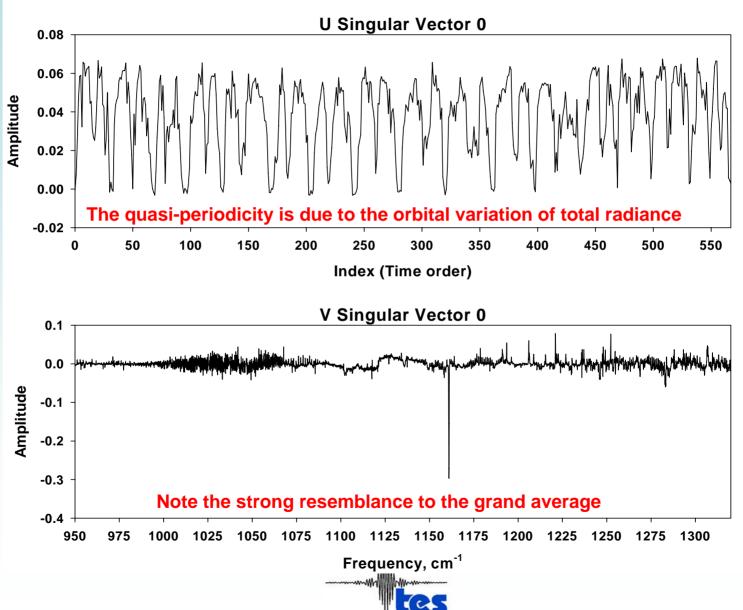
- Difference between measured spectrum and calculated from retrieval
- No just in the microwindows used
- Courtesy Reinhard Beer & Susan S. Kulawik

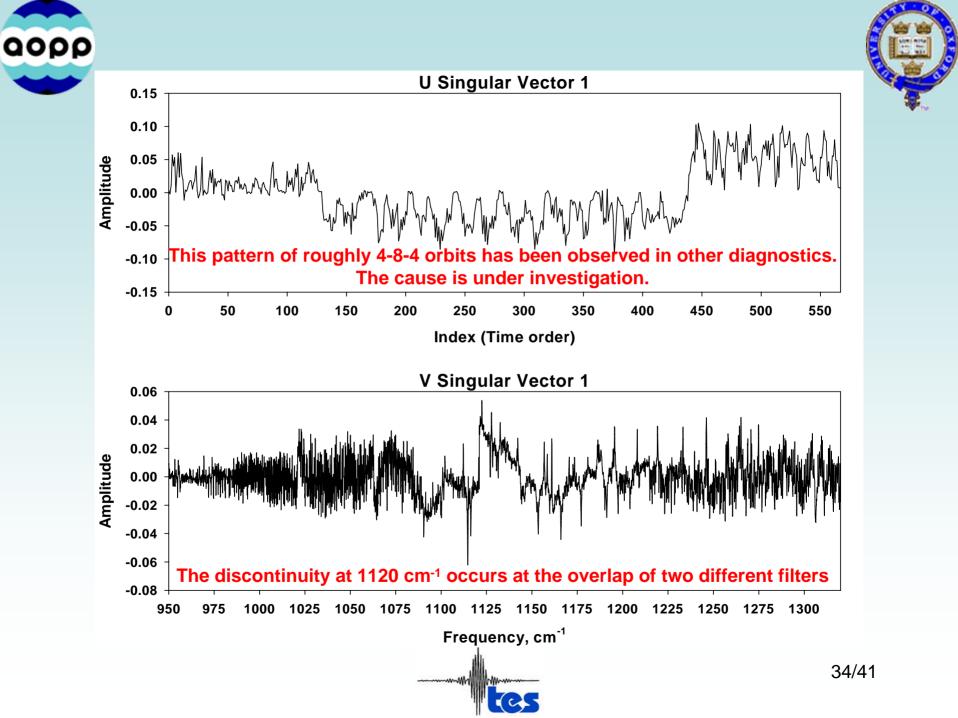


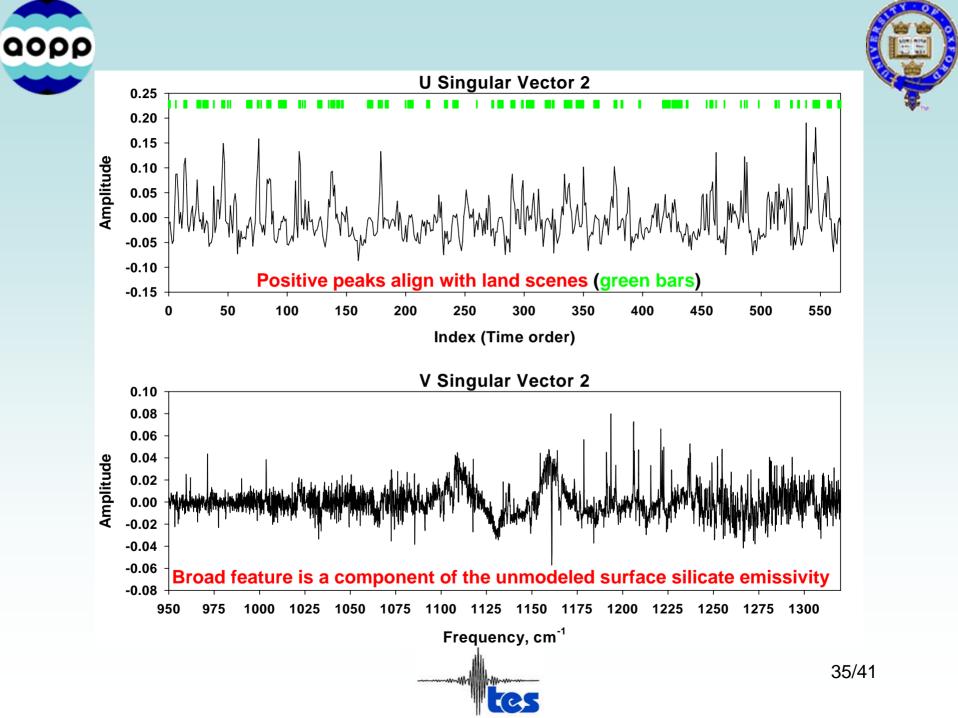
31/41

Singular Values of Run 2147 Full-Filter Residuals ("W" Matrix Diagonal; First 51 Elements of 568 only)









Retrieval – some untested thoughts

Possible methods include:

- Retrieve from denoised spectrum in the same way as usual, but with noise covariance reduced in some ad-hoc way
 - not optimal, inefficient
- Ditto, but with the correct error covariance
 - covariance matrix is singular
- Select a subset of channels according to information content
 - straightforward if linear, not otherwise
- Retrieve from SV representation coefficients
 - needs a special forward model for efficiency PCRTM
 - or a regression or neural net method

37/41

Characterising a denoised spectrum

• Reconstruct y with the first r singular vectors, U_r , giving y_r

 $\mathbf{y}_{r} = \mathbf{U}_{r}\mathbf{U}_{r}^{T}\mathbf{y}$

- Measurement function is: $y_r = U_r U_r^T F(x) + U_r U_r^T \varepsilon$
- We assume that $U_r U_r^T F(x) \sim F(x)$, so $y_r = F(x) + U_r U_r^T \varepsilon = F(x) + \varepsilon_r$
- Covariance of ε_r is $S_{\varepsilon r} = U_r U_r^{T} S_{\varepsilon} U_r U_r^{T}$ which is of rank r

Retrieve from a denoised spectrum

- We can use all or some of the spectrum.
 - Microwindows
 - Channels selected by information content
 - Channels selected by Xu Liu's approach
- Define a selection operator M, and retrieve from the m element subset $y_m = My_r$
- The subset depends on the whole of the original spectrum, $y_m = MU_rU_r^Ty$, but we assume that we can model it as MF(x).
- The error covariance of ε_m is $S_m = M U_r U_r^T S_{\varepsilon} U_r U_r^T M^T$ which may be singular if m > r.

- Use the SVD of $MU_rU_r^T = L\Lambda R^T$ to give $L^Ty_m = L^TMF(x) + \Lambda R^T\varepsilon$
- Drop elements of L^Ty_m with zero (or small) singular values, leaving p=min(r,m) elements at most. Gives L_p^Ty_m
- Retrieve from the rest of $\mathbf{L}_{p}^{T}\mathbf{y}_{m}$ with $\mathbf{L}_{p}^{T}\mathbf{MF}(\mathbf{x})$ as the forward model. \mathbf{L}_{p}^{T} can be precomputed.
- Error covariance is $\Lambda_p R_p^T S_{\epsilon} R_p \Lambda_p$. If $S_{\epsilon} = \sigma^2 I$, this reduces to $\sigma^2 \Lambda_p^2$.

- This allows us to retrieve with the minimum number of evaluations of the forward model
- And the minimum length of measurement vector
- With very little extra matrix manipulation
- I havn't tried it yet, so I don't know what the catch is...

Summary/Comments

- PCA does not improve the information content of a measurement
- But it does allow us to use it more efficiently
- Very useful for validation separates out independent sources of variation, e.g. artefacts, omitted physics, ...
- Denoised spectra guide the eye to real features that may otherwise not be seen
- Data compression