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My take on the PCA business
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O . .
aopp  What Is the best estimate of a

>  gpectrum given many measured
spectra?

Simple approach using optimal estimation:
» Forward model is
y = X+ g

X is true spectrum, y is measurement, € is noise

»+ Maximum a posteriori estimate of x is
Xp=Xq * sa(sa + 58)—1(Y - xa)
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e Continued...

+ If we have a large sample of spectra:
- Expect that x, = <x + & = <y>
- Can estimate S +S, from statistics of y
- Should have a good idea of S, a priori

- But:
- 5,(5,+S,)! will be a large matrix
- S, found from S+S, and S, is likely to be ill-conditioned

- S, is likely to have a 'small’ number of eigenvalues

greater than noise
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Qopp Singular Vectors
(or Principal Components)

¢

Let the ensemble of (y - <y>) be N columns of a matrix Y

Represent Y as its singular vector decomposition:
Y = UAVT
where A is diagonal, UTU=I and V'V=I

The j'th individual spectrumy is then
YJ = <y>+ Z‘/' uﬂlvljr

+ The spectrum is represented as a sum of columns u; of U,

with coefficients Ay,

* Because U'U=I, we can compute 1y
UT(y,-<y>).

;' forany spectrum as
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What do we expect?

I/\YYT is the covariance matrix S, of the spectra

Left singular vectors U are the same as eigenvectors of YYT,
singular values are the square roots of its eigenvalues

In the linear case with independent constant noise, S, would be
S,=5,+021

S, has rank <, T is of dimension m >> n, where nis the degrees of
freedom of the atmosphere

The eigenvalues of S, are A;2/N

The eigenvalues of S, should be A;2/N - ¢ .2
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Reconstructing Spectra

We can drop terms with 12/N~ 2 ,ie. /> n, without
significant loss
- they correspond to noise only

- Beftter, multiply retained terms by something like
ﬂ‘lg -N 682)/Ai2

So spectra can be reconstructed from the first
few coefficients.

The noise can be reconstructed from the rest...

Reconstructed spectra have much reduced noise
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Information Content

» The Shannon information content of a single

spectrum relative to the ensemble is

H=1,> In(12/Nc2)

*+ The degrees of freedom for signal is

d;=%,(1-No2/42)

But reality isn't quite like that. . .
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“**Tropospheric Emission Spectrometer %

Connes-type four-port Fourier transform spectrometer
Nadir view: 0.06 cm-!

Limb view: 0.015 cm-!

16 element detector arrays in 4 focal planes:

- 1A (1900-3050), 1B (820-1150), 2A (1100-1950 ), 2B
(650-900)

0.5 X 5 km nadir; 2.3 X 23 km limb

Global Survey mode: Along track nadir, 216 views/orbit.
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SVD Applications

Information content analysis

Validation

- Instrument performance
- Forward model

De-noised spectra

Retrieval?
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A typical example

All singular values

107 F 3

1-::15-;— —;
Run 2147 10° L .
21 Sept 20047 104l — _— g

o3l L ]
Channel 1B2 0 500 1000 1500
923-1160 cm™

First 20 singular values

100 views * 16 '9'f | 3
detectors o6 \\\ |
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Using one orbit, 1152

spectra each with 3951
elements.

023-1160 cm?
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ple of Information Content
from Channel 1B2

d.f.s
cum.
.000 1.000
.997 0.997
.984 0.986
.896 0.912
.753 0.857
.490 0.737
.025 0.535
.259 0.234
.417 0.158
.468 0.051
.492 0.024
.499 0.007
.505 0.006
.508 0.003
.510 0.002

'| Total: 14.5 bits 7.05 d.f.

" T ------___Residual _
Fit to noise asymptote

4 =0

Tk

SV nu'r'h'ber
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<> How do you fit noise to the asymptote? e

* I havn't used enough spectra...

+ Expected distribution of singular values of
independent gaussian noise for a finite
number of samples

- Simulation
- Theory: there is an explicit formula

+ Fit expected distribution to the long tail
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> Validation — an early example

All singular values

107 F 3
1-::15-;— —;
Run 2147 10° F 1
21 Sept 20047 104 — R -
o3 . L S
Channel 1B2 0 500 1000 1500
923-1160 cm™
First 20 singular values
100 views *16 ~ '9°§ 3
detectors 108 \
105 = %%K""--________ E
0s L I .
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Singular Vectors

¢

First 6 Singular Vectors for scan 2 1B2 run 2147/
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- Singular vectors * Lambda

First 6 Singular Vectors *xlambda for scan 2 1B2 run 2147
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V-vectors

V—wvectors for sequences 1 to 30

sequence number

e
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Features

¢

Most of variation is in the first singular vector. First six
are:
5.96x106 3.6x105 1.83x105 1.39x10% 7.93x10* 6.16x10*

Data spikes - identified
Data spikes - unidentified
Pixel-dependent variation in the spectra

Scan-direction dependence
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Singular Vector 6

Systematic variation across the detector array

- Must be an artefact

Suggests systematic error in ILS

How is it related o mean spectrum?

* Least squares fit to find function that when

convolved with mean spectrum gives SV6
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SV6
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Mean Spectrum for scan 2 1BZ run 2147
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SV6

Fit to singular vector 6

950 1000 1050 1100

Residual

950 1000 1050 1100

1150
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e SV6
Fit coefficients
2x10-2E =
1x10Q-% .
R A ——
—1x10-° \
_2;.{1.:]—55 E
—-0.5 0.0 0.5
cr~—1

Suggests the derivative of the ILS
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QopP Curious behaviour of the singular values of
an ensemble of 1600 2B1 spectra
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What is this?
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Features

It occurs at around SV 200. I have used 100 sequences,
1600 spectra.

Implies two of these SV's per sequence. Confirmed by frying
other numbers of sequences

The vec tors look like noise

Only in 2B1 does this
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£ With 64 sequences, plotted in 9/04

singular values
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The shoulder here is at 64 — there was only 1 per sequence then
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Examine pixel noise

Look at the spectrum for each pixel minus the
mean over all pixels

- removes atmospheric structure,

- but differences will be slightly correlated

Singular vectors of the difference: look like noise

Coefficients of the singular vectors for one set of
16: don't look like noise for two of the SV's

Covariance & correlation matrices
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SV coefficients

Singular vector coeffs of diffall

3x10%|
2x10* F

':-c'ltld:




QOPP 2B1 noise is significantly correlated between pixels

-
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Deductions

The change from 1 fo 2 SVs per sequence implies
something in the processing rather than the
instrument

Each pixel has its own independent noise

Plus noise correlated between all the pixels of each
sequence

The correlations depend on distance between the
pixels, quasi-sinusoidally

Not an odd pixel/even pixel effect
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SV’s of Residual Spectra

+ Difference between measured spectrum

and calculated from retrieval

* No just in the microwindows used

» Courtesy Reinhard Beer & Susan S. Kulawik
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Residual Radiance, watts/cm?/sr/cm™

Mean Residual Radiance for Run 2147 (2004 September 21)
from 220 Spectra between 30°S & 30°N
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Singular Value

Singular Values of Run 2147 Full-Filter Residuals
("W" Matrix Diagonal; First 51 Elements of 568 only)
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Amplitude

Amplitude

0.08

0.06

0.04

0.02

0.00

-0.02

U Singular Vector O

The quasi-periodicity is due to the orbital variation of total radiance
0 50 100 150 200 250 300 350 400 450 500 550
Index (Time order)
V Singular Vector 0
Note the strong resemblance to the grand average

950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 1250 1275 1300

Frequency, cm™
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Amplitude

Amplitude
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U Singular Vector 1

{This pattern of roughly 4-8-4 orbits has been observed in other diagnostics.
The cause is under investigation.

0 50 100 150 200 250 300 350 400 450 500 550

Index (Time order)

V Singular Vector 1

The discontinuity at 1120 cm-t occurs at the overlap of two different filters

950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 1250 1275 1300

Frequency, cm™
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0.25
0.20
0.15
0.10
0.05
0.00

Amplitude

-0.05
-0.10
-0.15

0.10
0.08
0.06
0.04
0.02
0.00
-0.02
-0.04

plitude

Am

-0.06 A

-0.08

U Singular Vector 2

| |
Positive peaks align with land scenes ( )
0 50 100 150 200 250 300 350 400 450 500 550
Index (Time order)
V Singular Vector 2
Broad feature is a component of the unmodeled surface silicate emissivity

950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 1250 1275 1300

Frequency, cm™
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> Retrieval — some untested thoughts s

Possible methods include:

- Retrieve from denoised spectrum in the same way as
usual, but with noise covariance reduced in some ad-hoc
way

* not optimal, inefficient

- Ditto, but with the correct error covariance
- covariance matrix is singular

- Select a subset of channels according to information
content

- straightforward if linear, not otherwise

- Retrieve from SV representation coefficients
* needs a special forward model for efficiency - PCRTM

* or a regression or neural net method
36/41
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> Characterising a denoised spectrum %

* Reconstruct y with the first rsingular vectors,

U., giving y,
Y. = UU.y

« Measurement function is:
y. = UU.TF(x) + UU.Te

« We assume that UU.TF(x) ~ F(x) , so
y.= F(x)+UU.Te = F(x) + &,

 Covariance of ¢, is
S.= UUTSUUT
which is of rank r
37/41
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< Retrieve from a denoised spectrum e

We can use all or some of the spectrum.
- Microwindows
- Channels selected by information content
- Channels selected by Xu Liu's approach

Define a selection operator M, and retrieve from the m
element subset y,. = My,

The subset depends on the whole of the original spectrum,
Y..= MU U.Ty, but we assume that we can model it as MF(x).

The error covariance of ¢, is
S,=MUU.TSUU.TMT
which may be singular if m> r.
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Do another SVD...

+ Use the SVD of MU U." = LART to give

LTy, = LTMF(x) + ARz

Drop elements of L'y, with zero (or small) singular
values, leaving p=min(r,m) elements at most. Gives

L, Y

Retrieve from the rest of L,"y,, with L,"MF(x) as
the forward model. L™ can be precompuTed

Error covariance is AR,TSRA, . If S:=0%I, this

reduces to GZA 2
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Comments

This allows us to retrieve with the minimum
number of evaluations of the forward model

And the minimum length of measurement vector
With very little extra matrix manipulation

I havn't tried it yet, so I don't know what the

catch is...
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Summary/Comments

* PCA does not improve the information content of a

measurement
But it does allow us fo use it more efficiently

Very useful for validation - separates out
independent sources of variation, e.g. artefacts,
omitted physics, . ..

Denoised spectra guide the eye to real features
that may otherwise not be seen
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